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When a low-dimensional chaotic attractor is embedded in a three-dimensional space its topological proper-
ties are embedding-dependent. We show that there are just three topological properties that depend on the
embedding: Parity, global torsion, and knot type. We discuss how they can change with the embedding. Finally,
we show that the mechanism that is responsible for creating chaotic behavior is an invariant of all embeddings.
These results apply only to chaotic attractors of genus one, which covers the majority of cases in which
experimental data have been subjected to topological analysis. This means that the conclusions drawn from
previous analyses, for example that the mechanism generating chaotic behavior is a Smale horseshoe mecha-
nism, a reverse horseshoe, a gateau roulé, an S-template branched manifold, etc., are not artifacts of the

embedding chosen for the analysis.

DOI: 10.1103/PhysRevE.75.066214

I. INTRODUCTION

Chaotic time series have been generated by a large num-
ber of experiments. Typically a scalar time series is available,
and a chaotic attractor must be generated from the scalar
time series using some embedding procedure. The algorithm
of choice is the time delay embedding [1-3], although dif-
ferential embeddings, Hilbert transform embeddings, and
singular value decomposition embeddings have also been
used [4,5].

The properties of embedded chaotic attractors have been
analyzed along three distinct mathematical lines: Geometric,
dynamical, and topological. Geometric analyses involve
computing various fractal dimensions [6]. Dynamical analy-
ses involve computing Lyapunov exponents and the average
Lyapunov dimension [7]. Topological analyses concentrate
on the global topological properties of an attractor by study-
ing how stretching and squeezing mechanisms organize the
unstable periodic orbits embedded in the attractor [4,5,8—10].

In all approaches, it is assumed that the embedding
adopted creates a diffeomorphism between the underlying
(invisible) experimental attractor that generates the data and
the embedded, or reconstructed, chaotic attractor [2,3]. Since
the geometric and dynamical measures (dimensions and ex-
ponents) are invariant under diffeomorphisms, in principle
these real numbers are embedding-independent. In practice,
they are difficult to compute, and become increasingly diffi-
cult to compute as the length of the time series and/or the
signal to noise ratio decreases. Further, there is no indepen-
dent way to compute errors for the estimates of these real
numbers. It was even shown in [11] that in some experimen-
tal data sets estimates of the fractal dimensions are
diffeomorphism-dependent. Spurious Lyapunov exponents
occur when the embedding dimension exceeds the dimension
of the dynamical system. This has been addressed in [12,13]
but remains an open problem.

By constrast, topological analyses on three dimensional
embeddings have been carried out with relatively short ex-
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perimental data sets and are robust against noise. In addition,
this analysis method is overdetermined. The stretching and
squeezing mechanism creating the embedded chaotic attrac-
tor can be determined from a small number of unstable pe-
riodic orbits and used to predict the topological organization
of all remaining orbits. These predictions (linking numbers,
relative rotation rates) either agree or do not agree with those
for orbits extracted from the embedded chaotic attractor. In
the latter case the model describing stretching and squeezing
must be rejected.

What has never been satisfactorily understood is the rela-
tion between the topological properties of the underlying (in-
visible) experimental attractor that generates the data and the
chaotic attractor that has been constructed through an em-
bedding of the data. We illustrate this difficulty with two
examples. (1) The Lorenz attractor [14] is described by vari-
ables (x(z),y(¢),z(z)). One three-dimensional embedding is
the obvious one: (X,,X,,X3)=(x,y,z). The chaotic attractor
in this embedding is invariant under rotations: (X;,X,,X3)
—(=X;,-X,,X3). On the other hand, if a single variable is
observed [either x(z) or y(z)] [15] the chaotic attractor created
through the differential embedding (X;,X,,X3)=(x,x,%) will
exhibit inversion symmetry (X;,X,,X;)— (-X;,-X,,—X3)
[16,17]. (2) The chaotic behavior of Bénard-Marangoni fluid
convection in a square cell [18] was modeled by a periodi-
cally driven Takens-Bogdanov nonlinear oscillator [19]. This
model was studied using a time delay mapping of the form
(X1,X5,X3)=(x(2),x(1) ,x(t— 7)) [20]. For a range of values of
the time delay 7, 7y < 7<r,, the image of the data under this
mapping exhibits self intersections and the mapping is there-
fore not an embedding (technically, it is an immersion)
[20,21]. For 7< 7, and 7, < 7 the mapping is an embedding.
The topological organization of the unstable periodic orbits
under the two embeddings is different, so the global topo-
logical structure of the two embedded attractors is not
equivalent [21].

This discussion brings us to the crucial question: When
topological information about a chaotic attractor is deter-
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mined from a three-dimensional embedding of the chaotic
attractor, what part of that information is embedding-
dependent and what part is embedding-independent? In this
work we answer this question for a large class of chaotic
attractors. These consist of all chaotic attractors of “genus-
one” type [22,23]: Their natural phase space is equivalent to
a torus. This includes the chaotic attractor discussed in the
example (2) above. The answer is that the “mechanism” (de-
fined in Sec. V below) is independent of embedding. Further,
the topological organization of all periodic orbits in the at-
tractor can differ in a very limited number of ways (parity,
global torsion, and knot type; see Sec. IV below). This cru-
cial question remains open for chaotic attractors whose natu-
ral phase space is a torus of genus g (g>1). This includes
the Lorenz attractor as well as many other chaotic attractors
[22,24]. Tt also remains open for all higher-dimensional (hy-
per)chaotic attractors.

II. ASSUMPTIONS

We make the following assumptions

(1) A deterministic process (e.g., laser equations, Navier-
Stokes equations) acts to generate an experimental chaotic
attractor that is three-dimensional. A single variable (e.g.,
laser intensity, fluid surface height) is measured.

(2) At least one embedding of this scalar time series in R*
can be constructed. This embedding creates a diffeomor-
phism between the original experimental chaotic attractor
and the embedded or “reconstructed” chaotic attractor.

(3) The embedded chaotic attractor is of genus-one type:
That is, it can be enclosed in a genus-one bounding torus
[22,23].

Some remarks about these assumptions are in order. We
assume in (1) that there is an experimental chaotic attractor
and that it is three dimensional. By three-dimensional we
mean explicitly that there is a three dimensional manifold in
the phase space that contains the attractor. We require this
assumption on dimension because, at the present time, topo-
logical analysis methods based on templates are only appli-
cable to three dimensional chaotic attractors, that is, those
that that exist in three-dimensional manifolds. The assump-
tion that the deterministic process generates a low-
dimensional attractor is also strong: the Navier-Stokes and
the full laser equations are partial differential equations
rather than sets of ordinary differential equations, and act in
Hilbert spaces rather than finite dimensional phase spaces
[25].

Assumption (2) is necessary because the Whitney embed-
ding theorem [1] and its dynamical variants [2,3] only guar-
antee that the three-dimensional manifold containing the cha-
otic attractor can be embedded into a space of sufficiently
high dimension (6=2 X 3), but do not ensure that it can be
done into a three-dimensional phase space. In practice,
whether this assumption holds can be tested a posteriori by
verifying that the topological invariants measured are consis-
tent with a single two-dimensional branched manifold. The
diffeomorphism property that is assumed of the mapping is
the standard assumption for all approaches to analysis of
embedded data [2,3].
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Assumption (3) is crucial for our result. It allows us to
reduce the problem of the inequivalence of embeddings of
chaotic attractors to the problem, already solved [26], of the
equivalence classes of diffeomorphisms of the solid torus
into the three-dimensional Euclidean space R>. In the higher
genus case (e.g., Lorenz attractor) the spectrum of inequiva-
lent diffeomorphisms (embeddings) of these attractors is re-
lated to the spectrum of inequivalent diffeomorphisms of the
higher genus tori to themselves, which remains to be studied.

III. PRELIMINARY REMARKS

We begin by recalling that diffeomorphisms map periodic
orbits to periodic orbits. If x(7) is a point on a periodic orbit
so that x(¢+7)=x(z), then under a diffeomorphism that takes
x—Y, y(#)=y(t+T). This means that periodic orbits are nei-
ther created nor annihilated by diffeomorphisms. In particu-
lar, the spectrum of periodic orbits associated with (“in”) a
chaotic attractor is an invariant of diffeomorphisms. On the
other hand, their topological organization, as encoded by
their topological invariants (linking numbers, relative rota-
tion rates), could change under diffeomorphism.

We will describe exactly how these topological invariants
can change under diffeomorphism when the phase space con-
taining the chaotic attractor is a torus D> X S', where D? is a
disk in the plane (D*>CR?) and S! is parameterized by ¢,
usefully considered as a phase angle mod 2. In this phase
space trajectories can be expressed in the form
(x(2),y(1), d(2)). This class includes nonautonomous dynami-
cal systems such as the periodically driven Duffing, van der
Pol, and Takens-Bogdanov nonlinear oscillators where ¢ and
t are linearly related, and autonomous dynamical systems
whose phase space projection (x,x) exhibits a “hole in
the middle” [e.g., Rossler system [27] at (a,b,c)
=(0.398,2.0,4.0)]. Tt includes other autonomous dynamical
systems with a hole in the middle that is present but obscured
by simple projections [e.g., Rossler system at (a,b,c)
=(0.398,2.0,13.3)]. For this class of systems the phase ¢
=¢(r) is a monotonic function of the time 7. This discussion
explicitly excludes attractors of genus g=2 with two or
more “holes in the middle,” such as the Lorenz attractor.

In the work to follow we seek a discrete enumeration of
embeddings, or diffeomorphsims, of strange attractors. To
achieve this end, it is necessary to “mod out” continuous
degrees of freedom associated with diffeomorphisms. To do
this, we introduce the idea of isotopy. Two embeddings f
and f; are isotopic is there is a one parameter family of
mappings, f(s), with f(0)=f,, f(1)=f, and f(s) is an embed-
ding for all s, 0=s=1. Such a family of embeddings merely
deforms the phase space smoothly. The topological organiza-
tion of periodic orbits is unchanged under isotopy. For if two
orbits intersected during the deformation from s=0 to s=1,
the uniqueness theorem would be violated and the mapping
f(s) (for some s) would not be a diffeomorphism. For this
reason isotopic mappings are in some sense equivalent. The
sense is that all topological indices for orbits in a strange
attractor are the same for all embeddings in the same isotopy
class.
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FIG. 1. (a) Two nonisotopic circles are drawn on the surface of
the solid torus containing a chaotic attractor. The longitude is ori-
ented along the direction of the flow. The meridian is oriented by
the right-hand rule. The solid torus is mapped diffeomorphically to
a torus with (b) n=2 or (c) negative parity.

Our problem therefore reduces to (1) classifying the set of
isotopy classes of diffeomorphisms D?>X S'— D?x S!, (2)
classifying the set of isotopy classes of diffeomorphisms
D?>X S' - R3, and (3) determining how topological invariants
change from one class to another. The first two parts of this
program are resolved in Secs. IV A and IV B. The third part
is discussed in Secs. V and VI. A more detailed exposition of
these points is presented in Appendix A.

IV. EMBEDDINGS OF A TORUS

Diffeomorphisms of the torus fall into two broad classes:
intrinsic and extrinsic [26,28]. Intrinsic diffeomorphisms are
mappings of the torus to itself “as seen from the inside.”
Specifically, they are mappings D* X S' — D?X S'. Extrinsic
diffeomorphisms describe how the torus sits in R3. They are
mappings D?>X S'— R3. Intrinsic diffeomorphisms are re-
sponsible for two of the three degrees of freedom mentioned
in the abstract and introduction: Parity and global torsion.
Extrinsic diffeomorphisms are responsible for the first two
and in addition the third: Knot type.

A. Intrinsic diffeomorphisms

These also fall into two classes: Those that are isotopic to
the identity and those that are not.

Isotopic to the identity. Diffeomorphisms that are isotopic
to the identity smoothly deform the phase space. Therefore,
they do not change the topological organization of the peri-
odic orbits in it. Under these diffeomorphisms the topologi-
cal invariants of periodic orbits remain unchanged.

Not isotopic to the identity. Mappings of the torus to itself
that are not isotopic to the identity have been classified [26].
The idea is as follows. On the two-dimensional surface 7°
=d(D?>X S") that is the boundary of the solid torus it is pos-
sible to construct two circles that cannot be deformed to a
point, as shown in Fig. 1. We orient both. The longitude is
oriented along the direction of the dynamical system flow.
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The meridian bounds a disk that can be used as a Poincaré
surface of section. It is oriented according to the right-hand
rule. Up to isotopy (the class of diffeomorphisms considered
in the preceding paragraph) the inequivalent diffeomor-
phisms of the torus to itself are classified by their action on
the longitude and meridian by the matrix [26]

[l n} 1
0 =1 ]| M

The integer n describes the number of rotations of the longi-
tude about the core (center line) of the torus as the phase
angle ¢ increases from O to 27r. The integer =1 indicates
whether the diffeomorphism preserves or reverses the orien-
tation of the meridian. We identify +1 with parity and n with
global torsion in Sec. V.

Remark. The matrices presented in Eq. (1) are group op-
erations. Diffeomorphisms of the torus to itself form a group.
The subset that is isotopic to the identity forms a subgroup
that is invariant in the larger group. The quotient of these two
groups therefore forms a group. This group is discrete. It is
generated by two operations, represented by the matrices

{11] [10} ,
o 1] ™ |o _1] @

The first describes the generator that produces a uniform ro-
tation along the axis of the torus: ((x+iy),¢®)—((x
+iy)e'®, ¢). The second generator produces the effect of
looking into a mirror: (x,y, ) — (x,—y, ). This coset de-
composition says simply that every intrinsic diffeomorphism
can be constructed by composing a diffeomorphism isotopic
to the identity with one from the discrete group whose matrix
representation is given in Eq. (1).

B. Extrinsic diffeomorphisms

The mapping of D*XS! into R® shown in Fig. 2(a) is
called the “natural embedding” [26]. One natural embedding
of a chaotic attractor with coordinates (x;(¢),x,(¢),®) in
D>x 8" into R is (X(1),Y(1),Z(t)), with t=¢ and X=(R
—x1)cos ¢, Y=(R—x;)sin ¢, and Z=x,. This is an embedding
provided the circle is “bigger” than the attractor. Specifically,
if the radius of the disk D? containing the attractor is a, so
that x%(qﬁ) +x§(¢) <a? for all ¢, then R>a guarantees that
no self-intersections occur in the natural embedding.

The circle is the simplest knot in R*. Other knots in R? can
be used as central curves for other extrinsic embeddings. The
knot K has coordinates K(¢)=(K,(¢),K,(),K5(¢p)) with
K(¢)=K(p+27). As with any smooth space curve [29], this
knot has a moving coordinate system (repere mobile) with
orthogonal unit vectors t(¢), n(¢), b(¢). The section of a
chaotic attractor in D*> X S! at phase angle ¢ is lifted into the
plane in R? perpendicular to the tangent vector t(¢) at K(¢)
by the mapping (x;(¢),x%,(¢),$) —K(¢)+x,(¢)n(e)
+x,()b(¢). This mapping is an embedding provided there
are no self intersections. This is guaranteed provided two
conditions are satisfied [30].
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(d)

FIG. 2. (a) The torus D*>XS! of Fig. 1(a) is embedded in a
natural way in R3. In this embedding the core of the torus is a circle
of radius R. The torus can also be mapped into R? with a nonzero
framing index f. The framing index is +1 in the embeddings (b) and

(c).

Local condition. The radius of curvature of K is every-
where greater than a.

Global condition. The curve K is “big enough.” This
means specifically that all nonzero local minima of |K(¢,)
-K(¢,)| are larger than 2a.

An important integer is associated with each knot K. This
is its framing index, f [26]. It describes how many times the
vectors n and b wind around t as the knot is traversed. Spe-
cifically, it is the gauss linking number of two closed curves
in R?. One closed curve is the knot itself. The other is ob-
tained by displacing it a small distance along the normal
vector. Its coordinates are given by setting (x,(),x,(b), @)
=(1,0, ¢) in the mapping above. We use this integer in Sec.
VI to describe the problems of the delay embeddings of the
fluid data presented in Sec. I, example (2) (embedding of
Benard-Marangoni fluid data). Embeddings of the torus into
R? with framing index f=+1 are shown in Figs. 2(b) and
2(c).

Remark. As Fig. 2 shows, choice of a knot in R3 for the
center curve of the embedded torus is independent of the
choice of the framing index of the embedded torus. The knot
type of the center curve is one degree of freedom of embed-
dings of a genus-one torus into R>. Two other degrees of
freedom, the framing index (which is equivalent to global
torsion) and parity have already been encountered in diffeo-
morphisms D? X §' — D> X §!.

Remark. 1t is pedantically more accurate to describe ex-
trinsic embeddings as diffeomorphisms D?XS§'— D?
X S'C R3. In the remainder we forgo this mathematical pre-
cision.

V. MECHANISMS

Chaotic attractors in three dimensional spaces are charac-
terized by the spectrum and topological organization of their
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unstable periodic orbits (UPOs) [4,5]. The topological orga-
nization of the periodic orbits is summarized by a knot
holder (also called a branched manifold or a template)
[31,32]. The spectrum of UPOs in the attractor is a subset of
all the orbits contained in the knot holder. This subset is
specified by a basis set of orbits [33]. The knot holder that
describes an embedded chaotic attractor is identified by ex-
tracting a rather small set of orbits from the attractor and
determining their topological organization [10]. As a result,
knot holders are invariant under diffeomorphisms isotopic to
the identity, since they are derived from the topological in-
dices of periodic orbits, which do not change under isotopy.
Knot holders can differ only by the indices that describe the
distinct equivalence classes of diffeomorphisms. These are
the parity index x1, the global torsion 7, and the knot type of
the embedding into R3, including the framing index f. Fur-
ther, as the spectrum of UPOs in a chaotic attractor is a
diffeomorphism invariant, every embedding of a chaotic at-
tractor has the same basis set of orbits.

A knot-holder has as many branches as the number of
symbols required to uniquely identify the unstable periodic
orbits in the attractor. This number, as well as the symbolic
name of each periodic orbit, can be determined by construct-
ing a generating partition [34-38]. Techniques have also
been developed to construct the knot-holder without prior
knowledge of a symbolic encoding, by searching directly for
the simplest template with a set of orbits isotopic to the
experimental one [5,39,40]. A generating partition can then
be constructed from this information [39-41].

A knot-holder has one or more branch lines. Two or more
branches leave from each branch line (“stretching process”),
and two or more branches meet at each branch line (“squeez-
ing process”). Since knot holders are surrogates for chaotic
attractors [31,32], we regard information about which
branches leave each branch line and which meet at each
branch line as describing the mechanism generating chaos.

Chaotic attractors in a torus (genus one) possess a single
branch line [22], which may be an interval (Rossler and Duf-
fing attractors) or a circle (van der Pol attractor). For attrac-
tors in D?>X S' by “mechanism,” we mean explicitly the or-
der in which branches leave the branch line (left to right) or
circle (clockwise or counterclockwise) and the order in
which the branches are squeezed together when they return
to the branch line (front to back) or circle (inside to outside)
[9]. In the genus one case, mechanism describes how the
branch curve (line, circle) is folded back into itself in one
forward iteration. The return flow, from the output side of the
branch line [lines ¢ to d in Fig. 3(a)] to the input side [lines
a to b in Fig. 3(a)] is assumed to preserve order. The
“mechanism” is shown within the dashed rectangle of Fig. 3.
The part of the branched manifold describing the flow from b
to ¢ is the part of the branched manifold that describes
stretching (the divergence of branches A and B) and squeez-
ing (the joining of branches A and B). This is the part of the
branched manifold describing “mechanism.” This knot-
holder has only one branch line. We have shown four in Fig.
3 to emphasize the various roles played by that branch line.
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(b)

FIG. 3. (a) Knot holder for the Rossler attractor, shown inside a
torus D?>X S'. The flow enters at a, is split at b, joined at ¢, and
“leaves” at d. Periodic boundary conditions identify a and d. We
also identify b with a and ¢ with d. (b) Knot holder for the Lorenz
attractor, shown inside a genus-three torus. Branches A and B split
at a while C and D split at ¢. Branches C and B join at b while D
and A join at d. In both cases the mechanism is shown within the
dashed box (a) or boxes (b).

Knot holders for chaotic attractors in a genus-one torus
are classified by a pair of matrices [4,5,8,10]. If n symbols
are required to label periodic orbits, one matrix (the “tem-
plate matrix”) is an nXn matrix and the other (“array ma-
trix” or “joining matrix”) is a 1 X n matrix. These two matri-
ces are shown in Fig. 4 for two particular knot holders. One
[Fig. 4(b)] is the outside to inside scroll template with three
branches, which has been observed in (embeddings of) ex-
perimental data from lasers [42-44] and from neurons [50].
The other [Fig. 4(a)] is the inside-to-outside gateau roulé.
The diagonal matrix elements 7}; of the template matrix de-
scribe the local torsion (measured in units of ) for branch i.
The off-diagonal matrix elements 7;;=2 X Link(i, ) are twice
the linking numbers of the period-one orbits in branches i
and j. The array matrix describes the order in which the
branches are glued together at the branch line: The smaller
the integer entry, the further from the viewer in the projec-
tion.

Mechanisms that differ by being mirror images or by hav-
ing integer global torsion are represented by closely related
matrices. In the opposite parity case, the mirror image knot
holder has all integer entries with opposite signs. In the case
of global torsion 7, the even integer 2n is added to all entries
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FIG. 4. Three-branch knot holder for an (a) inside-to-outside
and (b) outside-to-inside “jelly roll” mechanism. the template ma-
trices and arrays that describe these branched manifolds algebra-
ically are also shown.

in the template matrix. The matrices that describe these two
variations of the gateau-roulé mechanism [cf. Fig. 4(b)] are

Branch Parity Global Torsion n
0 0 0 O 2n 2n 2n
1 0 -1 -2 2n 2n+1 2n+2 (3)
2 0 -2 =2 2n 2n+2 2n+2
[0 -2 —1] [0 2 1].

Embeddings with nontrivial knot type do little to alter the
matrices that describe the mechanism that generates chaotic
behavior [21]. Nontrivial knot type may change parity and
add global torsion, depending on the framing [26] of the knot
(see Sec. IV).

To be explicit, a mechanism that generates chaos requir-
ing three symbols can be of two types: a scroll mechanism
(Fig. 4) or an “S” mechanism. The template for the latter is
shown in Fig. 5, along with its description in terms of ma-
trices.

If one embedding of data reveals a scroll template, all
embeddings will reveal a scroll mechanism. If on the other
hand one embedding reveals an S mechanism, every other
embedding of these data will also reveal an S mechanism.
This is true because no transformation involving sign
changes or addition of global torsion [cf., Eq. (3)] can
change the description given in Fig. 4 to the description
given in Fig. 5. The mechanism (scroll or S) is an invariant
of embeddings.

Similarly, a horseshoe mechanism H(n,e) will be de-
scribed in all embeddings by template matrices
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( 1

2

FIG. 5. Three-branch knot holder for an S mechanism, along
with its template matrix and joining array.

Branch Matrices
Horseshoe with
. 0 2n  2n
Parity and 4)
2n 2n+e€

Global Torsion
[0 e] s

with e=+1 and n indicating parity and global torsion or
framing index, respectively. Matrices (4) describe all pos-
sible templates with two branches folding over each other. A
mechanism identified as a horseshoe in one embedding is a
horseshoe in any embedding.

VI. TOPOLOGICAL INDICES

Relative rotation rates are the natural topological index
for periodic orbits in the torus D> X S' [8]. Linking numbers
are the natural topological index for periodic orbits in R>.

Assume A and B are two periodic orbits in some embed-
ding in the torus D?>X S', and that their relative rotation rates
are R,»J-(A,B). These fractions are invariant under diffeomor-
phisms isotopic to the identity. Under diffeomorphisms D?
X §'— D?X S! with global torsion 7, or with parity —1, that
map A—A' and B— B’

Global torsion=n: R;(A",B") = R;j(A,B) +n,

Parltyz— 1: Rij(A”B,) Z—RU(A,B).

Diffeomorphisms D?>X §'—R* map A—A” and B— B".
For these closed curves in R, it is possible to compute both
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relative rotation rates and linking numbers. Under the natural
embedding [8] (cf., Fig. 2)

Rij( ",B") — Rij(A,B)~
Under an embedding into R® with framing index f
Rij(A”’B”) — RI](A’B) +f

In all cases the linking numbers of A” and B” in R* are the
sum of their relative rotation rates [8]:

PA PB

L(A".B") =2 2 Ry(A".B"),

i=1 j=1

where p,=p,» is the period of orbits A and A”, and similarly
for B. The dependence of the linking number of A” and B” on
the framing index f is

LAA",B") = Lo(A",B") + fpaps-

The framing index f for embeddings D?>XS'— D?
X S'CR? can be considered, for all practical purposes, as
equivalent to the global torsion n for embeddings D*X S!
—D*x S

VII. PERESTROIKAS

Up to this point the discussion has concentrated on em-
beddings of a single attractor. Usually experiments that gen-
erate chaotic attractors are carried out over a range of control
parameter values in an effort to create the equivalent of a
bifurcation diagram. In this section we discuss fixed embed-
dings of a family of attractors and the dual process: Families
of embeddings of a single attractor.

The first topological analysis of a family of chaotic attrac-
tors was carried out in [45]. A single embedding was used to
analyze many data sets from lasers with saturable absorbers
operated with three different absorbers and under various
operating conditions. This analysis revealed that through all
these changes the underlying branched manifold never
changed: it was only the basis set of orbits that changed
[33,45]. Results for a nuclear magnetic resonance (NMR)
laser [46] and a nonlinear vibrating string [47] were the
same. Subsequently, studies of the periodically driven Duff-
ing oscillator [48], CO, lasers with modulated losses [39,49],
a Nd-doped YAG (Yttrium Aluminum garnet) laser [42], a
Nd-doped fiber laser [43,44], and sensory neurons [50]
showed that the underlying branched manifold was a “gateau
roulé” or “jelly roll” branched manifold [4,5], and that under
variation of the modulation frequency the flow was directed
to branches of this branched manifold with systematically
increasing torsion.

In light of the results presented in the preceding sections,
these conclusions are embedding-independent: They would
have been reached using any embedding. First, the variation
of torsion with control parameters was observed using a
fixed embedding, hence is due to physical effects and not to
the choice of embedding. Within a fixed-embedding study,
the standard horseshoe H(0, 1) is topologically distinct from
a “reverse” horseshoe H(1,—1) (as observed in [42]). Sec-
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ond, the spiral structure that globally describes attractors ob-
served at different control parameters values would not have
been affected if an embedding with different knot type, tor-
sion and parity had been chosen.

It is often the case that families of mappings are studied in
an effort to identify an optimum embedding. The method of
minimum mutual information [51] was developed for pre-
cisely this reason. The first systematic study of the way the
topological properties of an embedded attractor can depend
on the embedding, or change with the embedding param-
eters, was carried out in [21]. This is the example (2) sum-
marized in the Introduction. Mappings with a delay 7<<m,
provided embeddings, as did mappings with 7> 7,. In both
cases, changing the delay 7 by a little had no effect on the
topological indices of the periodic orbits. In both cases the
torus embedded in R? wound around a vertical axis three
times before closing. In the transition from one regime of
embeddings to the other all relative rotation rates changed by
+2 (depending on whether the time delay 7 increases or de-
creases). In the interval 7, <7<, the mapping exhibited
self intersections, of the type indicated by the arrows in Fig.
2(c). The knot type of the embedding into R* remained un-
changed but its framing in R® changed. Further, the change
was by an even integer. This is a signature for framing
changes caused by change in handedness of writhe [5].

VIII. SUMMARY AND CONCLUSIONS

When a low dimensional chaotic attractor is embedded in
a three dimensional space, its topological properties depend
on the embedding. We show that, for a large class of low
dimensional attractors there are three topological properties
that are embedding-dependent and one that is embedding-
independent. The embedding-dependent properties are: par-
ity, global torsion, and knot type. In the latter case (of map-
pings D> X S' — R?), the framing index is the global torsion.
The embedding-independent property is the mechanism that
acts in phase space to create the chaotic attractor. The
mechanism is defined in Fig. 3 in terms of branched mani-
folds. The class of chaotic attractors for which these results
hold includes all genus-one attractors: Those whose phase
space is equivalent (diffeomorphic) to a torus D?X S'. This
class includes the Rossler attractor, periodically driven two-
dimensional nonlinear oscillators such as the Duffing, van
der Pol, and Takens-Bogdanov attractors, and most of the
experimentally generated chaotic attractors that have been
studied by topological methods. The principal result is that
any single embedding of a three-dimensional attractor in this
class suffices to determine the mechanism that has generated
the chaotic data. This class does not include the Lorenz at-
tractor and other attractors with more than one “hole in the
middle.”

APPENDIX A: CLASSIFICATION OF EMBEDDINGS
OF D?X SV INTO R?

1. Introduction

In this appendix, we provide the interested reader with
more details about how embeddings of genus-one attractors

PHYSICAL REVIEW E 75, 066214 (2007)

FIG. 6. Two embeddings of D>X S! as solid tori in R? cannot be
isotopic if their cores are not isotopic.

can be classified in terms of knot type, torsion, and parity.

Assume that two embeddings V¥, and ¥, of a chaotic
attractor are possible. The simplest case is when ¥, and V¥,
are isotopic: One embedding can be deformed continuously
into the other. Equivalence of the topological properties of
the two embeddings then trivially follows from the invari-
ance of the topological indices of closed curves with respect
to smooth deformations that do not induce self-intersections.

When W, is not isotopic to V5, we exploit the assumption
that the original strange attractor can be enclosed in a genus-
one torus. We first note that a diffeomorphism (or homeo-
morphism) mapping the original attractor to a reconstructed
attractor is defined on neighborhoods of these two strange
sets, and can easily be extended to a diffeomorphism (or
homeomorphism) between solid tori contained in these
neighborhoods and enclosing the attractors.

Since isotopic embeddings are equivalent, determining
how topological properties of two genus-one embeddings of
an attractor can differ thus simply amounts to studying iso-
topy classes of embeddings of D?> X §' into R3. There are two
levels in the classification of these isotopy classes, because
there are two ways in which two embedded solid tori can be
nonisotopic. The first level is extrinsic and deals with how
the core of the solid torus is embedded in R?. When shrunk
to their respective cores, two solid tori are isotopic if they
have the same knot type. The second level is intrinsic and
deals with how torus boundaries d(D*X S')=T? are mapped
to torus boundaries. Two embeddings such that the cores of
the embedded tori have the same knot type can still be
nonisotopic if the homeomorphism mapping the boundary of
one torus to the boundary of the other is not isotopic to
identity.

From this classification, we finally conclude that there are
three degrees of freedom in which two embeddings of a
genus-one attractor into R® can differ: Knot type (extrinsic
level), torsion and parity (at both extrinsic and intrinsic lev-
els).

2. Extrinsic level: Knot type

A necessary condition for two embeddings of a manifold
M to be isotopic is that their restrictions to a given submani-
fold M' C M are isotopic [26]. In particular, consider the core
of the solid torus D?>X S!, i.e., the submanifold C={B} X S!
with a base point B € D>. Two isotopic embeddings of D?
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FIG. 7. The boundaries of two embedded solid tori with isotopic
cores can be superimposed by isotopy deformations.

% 8! into R must embed C into R? isotopically. Since C is an
embedding of S! into D*> X S', embeddings of C in R* can be
classified as embeddings of Slin R3, ie., as ordinary knots.
Two torus cores are thus isotopic if, and only if, they have
the same knot type. Conversely, two embedded solid tori
whose cores are knotted in different ways cannot be isotopic.
(see Fig. 6.)

The actual situation (embedding) of tori in R3, as de-
scribed by the knot type of the torus core, is called the ex-
trinsic structure [28]. Every (tame) knot can be used as a
centerline for a torus that is embedded in R>.

Assume that two embedded solid tori have isotopic cores.
This allows us to superimpose the boundaries of the two
solid tori by isotopy deformations. This does not imply that
the two embeddings are isotopic. However, this indicates that
we can now study the classification of embeddings at an
intrinsic level, by considering mappings of the solid torus
into itself and forgetting about position in R* (looking now at
the torus from the inside rather than from the outside). Thus,
knot type of the torus core captures all information about
isotopy classes at the extrinsic level.

3. Intrinsic level: Global torsion and parity

We consider now two embeddings ¥, and ¥, of D?
X 8! such that the cores of the embedded solid tori are iso-
topic and their boundaries are superimposed (Fig. 7). A nec-
essary condition for the two embeddings to be isotopic is that
their restriction to the boundary of the tori are isotopic, as
with any submanifold. This condition is equivalent to requir-
ing that the restriction of (¥,)~'W, to the boundary of the
first torus is isotopic to identity. It is also a sufficient condi-
tion because a homeomorphism of the torus that has its re-
striction isotopic to identity is isotopic to identity [26]. Thus,
we are left with studying isotopy classes of homeomor-
phisms of the boundary d(D*X S')=T? into itself.

The group of homeomorphisms of this surface to itself
modulo isotopically equivalent embeddings is called the

PHYSICAL REVIEW E 75, 066214 (2007)

mapping class group and is equivalent to the modular group

a b
of 2 X2 matrices GL(2;Z)= Jl with a, b, ¢, d integer
C

and ad—bc==+1 [26]. This group describes how closed
curves S' C T? are mapped to closed curves in 77 under the
homeomorphism. The description is given in terms of the
basis set of (two) loops for the homotopy group of 72. These
two cycles are the meridian and the longitude. The meridian
can be regarded as the small loop that goes around a tire “the
short way” and the longitude as a long loop that goes around
the tire “the other way” [cf., Fig. 1(a)]. At the topological
level (homeomorphism) they are more or less equivalent. At
the level of dynamical systems they are not. The meridian
bounds a disk that lies inside D?>X S' and can be taken as
everywhere transverse to the flow that generates the strange
attractor or its embedding. This disk can be chosen as a
global Poincaré surface of section. The longitude can be cho-
sen in the direction of the flow. By restricting to the topology
underlying the dynamics, we investigate the class of in-
equivalent homeomorphisms of the torus boundary into it-
self. These are described by modular group operations of the

form
M= ,
0 €

with e=+1. We interpret the integer n as the number of times
the longitude links the core of the solid torus D?>X S!. Dy-
namically, n is the global torsion of the embedding. The sign
e==1 identifies the parity of the torus homeomorphism.

A point has to be made regarding parity. The mirror image
of an embedding is also an embedding, which differs from
the original embedding only by orientation. In the mirror
image of an embedding, all the topological invariants are
multiplied by —1. Since an embedding and its mirror image
cannot be isotopic because orientation is preserved under
isotopy (orientation cannot change without inducing self-
intersections at some stage of the deformation), parity has to
be taken account when classifying embeddings of solid tori
into R3.

Mirror image transformations act both at the extrinsic and
intrinsic levels. Their action at the extrinsic level is easily
incorporated in the the knot type, which is changed into its
mirror image. At the intrinsic level, parity is taken into ac-
count through the sign of the lower diagonal entry € of the
modular transformation (A1), which is also its determinant.

(A1)

4. Summary

Embeddings of genus-one attractors can be classified by
studying isotopy classes of the cores of the embedded tori
and of their boundaries. There are three degrees of freedom
by which embeddings of genus-one attractors into R*® can
differ: Knot type of extrinsic embedding, global torsion, par-
ity (handedness).
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